The Sol-Gel Handbook, 3 Volume Set: Synthesis, Characterization, and Application

£490.99 Buy It Now, FREE Shipping, 30-Day Returns, eBay Money Back Guarantee
Seller: the_nile_uk_store ✉️ (20,270) 98.3%, Location: London, GB, Ships to: WORLDWIDE, Item: 235486357273 The Sol-Gel Handbook, 3 Volume Set: Synthesis, Characterization, and Application. The Nile on eBay   FREE SHIPPING UK WIDE  

The Sol-Gel Handbook, 3 Volume Set

by David Levy, Marcos Zayat

This comprehensive three-volume handbook reviews the current state together with the latest developments, resulting in an indispensable resource that comprehensively treats all important aspects of sol-gel technology, including synthesis, properties and applications.

FORMAT Hardcover LANGUAGE English CONDITION Brand New

Publisher Description

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas.
The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces.
The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies.
The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.

Author Biography

David Levy is a Research Professor and head of the Sol-Gel Group at the Materials Science Institute of Madrid (ICMM) of the Consejo Superior de Investigaciones Cientí cas. His research interests are optical materials (bulk materials; thin- lm coatings as AR optical coatings, protection transparent coatings and functional coatings; oxide nanoparticles) and liquid crystal materials, by Sol-Gel processing and their applications. During his time at The Hebrew University of Jerusalem David Levy pioneered the sol-gel process for the preparation of organically doped silica-gel glasses. He has more than 130 publications and a number of patents to his name, and has received numerous prizes in recognition of his groundbreaking work on sol-gel materials, including the ?First Ulrich Prize? and the nomination to King Juan Carlos-I research award.

Marcos Zayat is currently vice-director of the Materials Science Institute of Madrid (ICMM). His scienti c interests are centered on the design of new optical coatings and the characterization of their physicochemical properties. After having obtained his PhD in Materials Science from The Hebrew University of Jerusalem in 1997, Marcos Zayat joined the ICMM where he continues developing sol-gel materials for optical and electrooptical applications. He has published more than fty original articles in prestigious scienti c journals.

Table of Contents

Preface XXI List of Contributors XXIII Volume One: Synthesis and Processing Part One Sol–Gel Chemistry and Methods 1 1 Chemistry and Fundamentals of the Sol–Gel Process 3
Ulrich Schubert 1.1 Introduction 3 1.2 Hydrolysis and Condensation Reactions 4 1.2.1 Silica-Based Materials 4 1.2.1.1 Precursor(s) 9 1.2.1.2 Catalyst (pH) 9 1.2.1.3 Alkoxo Group/H2O Ratio (Rw) 9 1.2.1.4 Solvent 10 1.2.1.5 Electrolytes 10 1.2.2 Metal Oxide-Based Materials 11 1.3 Sol–Gel Transition (Gelation) 17 1.3.1 Hydrolytic Sol–Gel Processes 17 1.3.2 Nonhydrolytic Sol–Gel Processes 22 1.3.3 Inorganic–Organic Hybrid Materials 22 1.4 Aging and Drying 24 1.5 Postsynthesis Processing 26 1.6 Concluding Remarks 26 References 27 2 Nonhydrolytic Sol–Gel Methods 29
Rupali Deshmukh and Markus Niederberger 2.1 Introduction 29 2.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles 31 2.2.1 Surfactant-Assisted Synthesis 31 2.2.2 Solvent-Controlled Synthesis 33 2.2.2.1 Benzyl Alcohol Route 33 2.2.2.2 tert-Butyl Alcohol Route 37 2.2.2.3 Ether Route 37 2.2.2.4 Acetophenone Route 38 2.2.2.5 Carboxylic Acid Route 39 2.2.2.6 Benzylamine Route 39 2.2.3 Microwave-Assisted Synthesis 40 2.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides 43 2.3.1 Composites 43 2.3.2 Organic–Inorganic Hybrid Materials 44 2.3.3 Metal Sulfides 46 2.3.4 Metals 47 2.4 Chemical Reaction and Crystallization Mechanisms 48 2.4.1 Introduction 48 2.4.2 Overview of the Main Chemical Reactions 49 2.4.3 Classical and Nonclassical Crystallization Mechanisms 51 2.4.4 Selected Examples 51 2.5 Assembly and Processing 56 2.5.1 Introduction 56 2.5.2 Nanoparticle Arrays and Superlattices 57 2.5.3 Oriented Attachment and Mesocrystals 59 2.5.4 Films 60 2.6 Summary and Outlook 63 References 63 3 Integrative Sol–Gel Chemistry 71
M. Depardieu, N. Kinadjian, D. Portehault, R. Backov, and Clément Sanchez 3.1 Introduction 71 3.2 Design of 0D Structures 72 3.2.1 Aerosol Processing 72 3.2.2 Capsules 75 3.2.2.1 Simple Emulsions Preparation 76 3.2.2.2 Mineralization of the Wax Dispersion 76 3.2.2.3 Temperature-Triggered Release 77 3.2.2.4 Introducing a Hydrophilic Compartment 79 3.2.2.5 Water@Wax@Water Emulsion Formulation 80 3.2.2.6 Water@Wax@Water Emulsion Mineralization 80 3.2.2.7 Temperature-Triggered Release 81 3.2.2.8 Wax@Water@Oil Emulsion Formulation 83 3.2.2.9 Wax@Water@Oil Emulsion Mineralization 84 3.2.2.10 Temperature-Triggered Release 85 3.3 Design of 1D Macroscopic Structures 88 3.3.1 Electrospinning 89 3.3.1.1 A First Case: TiO2 Fibers for Dye-Sensitized Solar Cells 89 3.3.1.2 Coupling Sol–Gel Reactions and Electrospinning 90 3.3.2 Extrusion 93 3.3.2.1 V2O5 Fibers as Alcohol Sensor 94 3.3.2.2 Composite Fibers Prepared with the Help of Polymer Dehydration/Reticulation 96 3.4 Design of Extended 2D Structures 99 3.5 Design of Extended 3D Structures 99 3.5.1 Foams 99 3.5.1.1 Silica Foams: Si-(HIPE) 101 3.5.1.2 Eu3+@Organo-Si-(HIPE): Photonic Properties 101 3.5.1.3 Pd@Organo-Si-(HIPE): Cycling Heck Catalysis Reactions 103 3.5.1.4 Enzyme@Organo-Si-(HIPE): High Efficiency Biocatalysts 104 3.5.1.5 Si-(HIPE) as Hard Template to Carbonaceous Foams and Applications 106 3.5.1.6 Carbon-(HIPE) as Li Ion Negative Electrodes 107 3.5.1.7 LiBH4@Carbon-(HIPE) for Hydrogen Storage and Release 107 3.5.2 Aerogels 112 3.5.3 Dense Nanostructured Monoliths 112 3.6 Conclusions 113 References 115 4 Synthetic Self-Assembly Strategies and Methods 121
Alexandra Zamboulis, Olivier Dautel, and Joël J.E. Moreau 4.1 Introduction 121 4.2 Templated Synthesis of Inorganic Materials 122 4.2.1 Self-Assembly of Mesoporous Silicas 123 4.2.2 Hydrothermal Rearrangement and Postsynthesis Treatment 125 4.2.3 Self-Assembly of Thin Films 126 4.2.4 Self-Assembly of Functionalized Mesoporous Silicas 127 4.3 Self-Assembled Organosilicas 128 4.3.1 Control of the Pore Structure: Templated Synthesis of Mesoporous Bridged Silsesquioxanes 129 4.3.2 Self-Organized Organosilicas 132 4.3.3 Self-Assembly Synthetic Strategies for Organosilicas with Optical Properties 139 4.3.3.1 Toward an H-Aggregation/Card Pack Stacking 141 4.3.3.2 From a J- to an H-Aggregation 149 4.3.3.3 Transcription of the J-Aggregation from the Precursor to the Material 153 4.4 Conclusions 154 References 154 5 Processing of Sol–Gel Films from a Top-Down Route 165
Plinio Innocenzi and Luca Malfatti 5.1 Introduction 165 5.2 Top-Down Processing by UV Photoirradiation 167 5.2.1 UV Curing of Oxides 167 5.2.2 UV Curing of Hybrid Sol–Gel Films 169 5.2.3 UV Photoirradiation of Mesoporous Films 170 5.2.4 Nanocomposite So–Gel Films by UV Photoirradiation 173 5.3 Laser Irradiation and Writing 174 5.3.1 Thermal-Induced Effects 174 5.3.2 Laser-Induced Microfabrication 175 5.3.3 Nanofabrication by Two- or Multiphoton Absorption 177 5.4 Electron Beam Lithography 178 5.5 Top-Down Processing by Hard X-Rays 181 5.6 Soft X-Ray Lithography 184 References 186 6 Sol–Gel Precursors 195
Vadim G. Kessler 6.1 Introduction 195 6.2 Simple Silicon Alkoxides 196 6.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis 197 6.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials 198 6.5 Simple Metal Alkoxides 200 6.5.1 Commercially Available Simple Metal Alkoxide 202 6.5.2 Customary Synthesis of Metal Alkoxide Precursors 209 6.5.2.1 Interaction of Metals with Alcohols 209 6.5.2.2 Alcoholysis of Complexes Derived from Volatile Acids Weaker Than Alcohols 209 6.5.2.3 Basic Alcoholysis of Metal Halides: Metathesis Reaction 210 6.5.2.4 Alcoholysis of Metal Oxides 210 6.5.2.5 Electrochemical Oxidation of Metals in Alcohols 211 6.5.2.6 Alcohol Interchange Reaction 211 6.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids 212 6.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes 213 6.8 Synthesis of Complex Materials: Single-Source Precursor Approach 214 6.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent 215 Abbreviations 216 References 216 Part Two Sol–Gel Materials 225 7 Nanoparticles and Composites 227
Guido Kickelbick 7.1 Introduction 227 7.2 Aqueous Sol–Gel Process 228 7.2.1 Silica Nanoparticles 228 7.2.1.1 Properties of Silica Nanoparticles 230 7.2.2 Metal Oxides 231 7.3 Nonaqueous Sol–Gel Process 232 7.3.1 Metal Oxides 232 7.4 Surface Functionalization of Nanoparticles 234 7.5 Nanocomposites 236 7.5.1 Dispersion of Silica Nanoparticles in Polymer Matrices 237 7.5.2 In Situ Production of Silica Particles in a Polymer Matrix 237 7.5.3 Melt Production of Silica Particles in a Polymer Matrix 238 7.5.4 Properties of Nanoparticle Polymer Nanocomposites 238 7.6 Conclusions 239 References 239 8 Oxide Powders and Ceramics 245
Maria Zaharescu and Luminita Predoana 8.1 Oxide Powders Obtained by Sol–Gel Methods 245 8.2 Ceramics from Sol–Gel Oxide Powders 248 8.3 Pure and Doped Single Oxide Ceramics 249 8.3.1 Nanocrystalline Yttria 249 8.3.2 Gd-Doped Ceria 249 8.4 Multicomponent Ceramics 250 8.4.1 Zirconium Titanate 250 8.4.2 Lead Titanate 251 8.4.3 Zr-Doped PbTiO3 251 8.4.4 Nb-Doped PZT 252 8.4.5 W-Doped PZT 252 8.4.6 Ca-Doped PbTiO3 253 8.4.7 Barium Titanate 255 8.4.8 (Er, Yb)-Doped BaTiO3 256 8.4.9 Barium Strontium Titanate 256 8.4.10 Co-Doped Barium Strontium Titanate 257 8.4.11 Mg-Doped Barium Strontium Titanate 257 8.4.12 Magnesium Titanate 257 8.4.13 B-Doped MgTiO3 258 8.4.14 Calcium Titanate 258 8.4.15 CaTiO3–(Sm, Nd)AlO3 Solid Solution 259 8.4.16 (Co, Cu)-Doped Calcium Titanate 259 8.4.17 (Na, K)-Doped Bismuth Titanate 260 8.4.18 Mg-Doped Barium Tantalate 261 8.4.19 Lead-Free Ba(Fe0.5Nb0.5)O3 261 8.4.20 B-Doped Mg4Nb2O9 261 8.4.21 Ce-Doped Lutetium Aluminum Garnet 262 8.4.22 Ce-Doped Barium Yttrium Garnet 263 8.4.23 Aluminum Titanate 263 8.4.24 Magnesium Aluminum Titanate 264 8.4.25 Lanthanum Cobaltite 265 8.5 Composite Ceramics 266 8.5.1 Al2O3–ZrO2 Nanocomposite 266 8.5.2 Alumina–Yttrium Aluminum Garnet 269 8.6 Conclusions 269 References 270 9 Thin Film Deposition Techniques 277
David Grosso, Cédric Boissière, and Marco Faustini 9.1 Introduction 277 9.2 General Aspects of Liquid Deposition Techniques 280 9.2.1 A Multistep Process between Chemistry and Engineering 280 9.2.2 Initial Solution (Sol–Gel Chemistry) 280 9.2.3 Deposition Step (Solution Spreading) 283 9.2.4 Evaporation Step (Progressive Concentration) 284 9.2.5 Optional Patterning Processes 288 9.2.6 Postdeposition Treatments (Stabilization, Consolidation, and Modification) 288 9.3 Spin Coating 289 9.3.1 Generalities on Spin Coating 289 9.3.2 Fundamentals of Spin Coating 290 9.3.3 Advantages and Drawbacks of Spin Coating 294 9.3.4 Some Critical Examples of Films Prepared by Spin Coating 295 9.4 Dip Coating 296 9.4.1 Generalities on Dip Coating 296 9.4.2 Fundamentals of Dip Coating 297 9.4.2.1 Model for the Capillarity Regime 299 9.4.2.2 Model for the Draining Regime 300 9.4.2.3 Combining Models to Describe Simultaneously Both Regimes 301 9.4.3 Advantages and Drawbacks of Dip Coating 302 9.4.4 Some Critical Examples of Films Prepared by Dip Coating 302 9.5 Alternative and Emerging Techniques 304 9.5.1 Roll-to-Roll Coating Techniques 304 9.5.2 Droplet-Assisted Deposition (Aerosol and Inkjet) 304 9.5.3 Electro-assisted Deposition 308 9.6 General Perspectives 310 References 310 10 Monolithic Sol–Gel Materials 317
Raz Gvishi 10.1 Introduction 317 10.2 Principles of Sol–Gel Monolith Fabrication 319 10.2.1 Hydrolysis and Condensation 319 10.2.2 Role of Drying in Monolith Fabrication 320 10.2.3 Chemical Composition Effects 321 10.2.3.1 Metal Alkoxide Precursor Types 321 10.2.3.2 pH Effect: Type of Catalyst Used 321 10.2.3.3 H2O: Si Molar Ratio (R) 322 10.2.3.4 Steric Effect of Precursor Ligand Groups 323 10.2.3.5 Functionality of Organically Modified Silanes 323 10.3 Routes for Fabrication of Monoliths 324 10.3.1 Xerogel Monoliths 325 10.3.1.1 Methods for Preparing Nonsilica Xerogel Monoliths 325 10.3.1.2 Methods for Preparing Silica Xerogel Monoliths 327 10.3.2 Organically Modified Silane Monoliths 329 10.3.2.1 ORMOSIL Inorganic–Organic Hybrid Monoliths in One Phase 330 10.3.2.2 Hybrid Monoliths by Fast Sol–Gel (FSG) Process 331 10.3.3 Multiphasic Composite Hybrid Monoliths 333 10.3.4 Aerogel Monoliths 338 10.4 Summary 339 References 340 11 Hollow Inorganic Spheres 345
Atsushi Shimojima 11.1 Introduction 345 11.2 General Strategies 345 11.2.1 Templating Methods 345 11.2.2 Template-Free Methods 347 11.3 Typical Synthesis Procedures 347 11.3.1 Hollow Silica Particles 347 11.3.2 Hollow Mesoporous Silica Particles 350 11.3.3 Hollow Organosilica Nanoparticles 354 11.3.4 Hollow Crystalline Silicate Particles 355 11.3.5 Hollow Titania (TiO2) Particles 357 11.3.6 Hollow Particles of Other Metal Oxides 359 11.4 Applications 360 11.4.1 Antireflective Coatings 360 11.4.2 Catalysis 361 11.4.3 Lithium Ion Battery 362 11.4.4 Biomedical Applications 363 11.5 Summary 365 References 365 12 Sol–Gel Coatings by Electrochemical Deposition 373
Liang Liu and Daniel Mandler 12.1 Introduction 373 12.2 Mechanism of the Sol–Gel Electrochemical Deposition 374 12.3 Manipulation of the Sol–Gel Electrochemical Deposition 379 12.3.1 Effect of Deposition Parameters 379 12.3.2 Electrochemical Deposition of Nanostructured Silica Thin Films 383 12.3.3 Selective Electrochemical Deposition on Patterns 385 12.3.4 Local Electrochemical Deposition of Sol–Gel Films by Scanning Electrochemical Microscopy 386 12.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films 388 12.4.1 Electrodeposition of Sol–Gel-Based Hybrid Films 389 12.4.2 Electrodeposition of Sol–Gel-Based Composite Films 390 12.5 Applications of Electrochemically Deposited Sol–Gel Films 394 12.5.1 Corrosion Protection and Adhesion Promotion 394 12.5.2 Electrochemical Sensors 397 12.5.3 Biocomposite Films 400 12.5.4 Other Applications 405 12.6 Summary 408 Abbreviations for Silanes 409 Acknowledgments 410 References 410 13 Nanofibers and Nanotubes 415
Il-Doo Kim and Seon-Jin Choi 13.1 Introduction 415 13.2 Nanofibers 415 13.2.1 Electrospinning Process 416 13.2.2 Polymer Nanofibers 417 13.2.3 Metal Nanofibers 419 13.2.4 Metal Oxide Nanofibers 421 13.2.5 Multicomposite Nanofibers 424 13.2.6 Graphene-Functionalized Nanofibers 426 13.3 Nanotubes 427 13.3.1 Direct Synthetic Methods of Nanotubes 427 13.3.1.1 Hydrothermal Synthetic Routes 427 13.3.1.2 Electrochemical Synthetic Routes 428 13.3.1.3 Electrospinning Routes 428 13.3.2 Indirect Synthetic Methods of Nanotubes 431 13.3.2.1 AAO Templating Routes 431 13.3.2.2 Inorganic Layer Templating Routes 432 13.3.2.3 Polymer Templating Routes 434 13.3.2.4 Electrospun Nanofiber Templating Route 436 13.4 Summary and Future Perspectives 439 References 439 14 Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks 443
Pîlar Aranda, Carolina Belver, and Eduardo Ruiz-Hitzky 14.1 Introduction 443 14.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches 444 14.3 Porous Nanoarchitectures from Delaminated Clays 450 14.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays 457 14.5 Conclusion 464 Acknowledgments 465 References 465 15 Sol–Gel for Metal Organic Frameworks (MOFs) 471
Kang Liang, Raffaele Ricco, Julien Reboul, Shuhei Furukawa, and Paolo Falcaro 15.1 Introduction 471 15.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures 472 15.2.1 MOFs Hosting Sol–Gel-Based Structures 472 15.2.2 Surface Chemical Functionalization of Sol–Gel Materials and Ceramics for MOF Technology 475 15.2.2.1 Nano/Microparticles 475 15.2.2.2 Thin Films 476 15.2.2.3 Membranes and Monoliths 477 15.2.3 Engineered Ceramics and Hybrid Materials for Controlled MOF Nucleation and Growth 478 15.2.3.1 Nano/Microparticles 478 15.2.3.2 Thin Films and Membranes 479 15.2.4 Conversion from Ceramics for the Fabrication of MOFs 480 15.3 Conclusion and Remarks 482 Acknowledgments 483 References 483 16 Silica Ionogels and Ionosilicas 487
Peter Hesemann, Lydie Viau, and André Vioux 16.1 Introduction 487 16.2 Ionogels 488 16.2.1 Brief Presentation of ILs 488 16.2.2 Sol–Gel in Ionic Liquids 489 16.2.2.1 Formic Acid Solvolysis Sol–Gel Way 490 16.2.2.2 Hydrolysis Sol–Gel Way 491 16.2.2.3 Mesoporous Silicas from Ionogels 492 16.2.2.4 Particulate Ionogels 492 16.2.3 Applications of Ionogels 493 16.2.3.1 Conducting Properties of Confined ILs 493 16.2.3.2 Hybrid Host Matrices for Ionogel Electrolytes 494 16.2.3.3 Ionogel Electrolytes for Lithium Batteries 495 16.2.3.4 Proton-Conducting Ionogel Membranes 495 16.2.3.5 Ionogel Electrolytes for Solar Cells 495 16.2.3.6 Ionogels Incorporating Task-Specific Solutes 495 16.2.3.7 Ionogels for Drug Release Systems 497 16.3 Ionosilicas 497 16.3.1 Definitions 497 16.3.1.1 Synthesis of Ionosilicas 498 16.3.2 Synthesis of Surface-Functionalized Ionosilicas 498 16.3.2.1 Postsynthesis Grafting Reactions 500 16.3.2.2 Cocondensation Reactions 500 16.3.3 Hybrid Ionosilicas 504 16.3.4 Ionic Nanoparticles and Ionic Nanoparticle Networks 505 16.3.5 Applications of Ionosilicas 506 16.3.5.1 Catalysis 506 16.3.5.2 Anion Exchange Reactions 507 16.3.5.3 Molecular Recognition 507 16.4 Conclusion 508 References 508 17 Aerogels 519
Shanyu Zhao, Marina S. Manic, Francisco Ruiz-Gonzalez, and Matthias M. Koebel 17.1 Introduction and Brief History 519 17.2 Synthesis and Processing 521 17.2.1 Gel Preparation 521 17.2.1.1 Silica Gels 521 17.2.1.2 Nonsilica Inorganic Oxide Gels 527 17.2.1.3 Organic and Biopolymer Gels 529 17.2.1.4 Exotic Gels 534 17.2.2 Gel Aging and Solvent Exchange 535 17.2.2.1 Aging Process 535 17.2.2.2 Effect of Solvent Exchange 536 17.2.3 Gel Modification and Chemical Functionalization 537 17.2.4 Gel Drying 538 17.2.4.1 Freeze-Drying 539 17.2.4.2 Ambient Pressure Drying 540 17.2.4.3 Supercritical Drying 543 17.2.4.4 High-Temperature Supercritical Drying 544 17.2.4.5 Low-Temperature Supercritical Drying 545 17.3 Characterization Methods 546 17.3.1 Structural Characterization 547 17.3.2 Chemical Characterization 548 17.3.3 Thermal Characterization 549 17.3.4 Mechanical Characterization 550 17.3.5 Optical Characterization 552 17.4 Selected Examples and Applications 553 17.4.1 Aerogels for Superinsulation 554 17.4.1.1 Silica Aerogels 555 17.4.1.2 Organic Aerogels 555 17.4.2 Aerogels for Catalysis: Chemistry Applications 556 17.4.2.1 Silica-Based Aerogel 556 17.4.2.2 Alumina-Based Aerogel 556 17.4.2.3 Titania-Based Aerogel 557 17.4.2.4 Zirconia-Based Aerogel 557 17.4.2.5 Carbon Aerogels 557 17.4.2.6 Other Mixed Oxides Composite Aerogels 558 17.4.3 Aerogels for Supercapacitor and Battery Research 558 17.4.4 Aerogels in Space Exploration 558 17.4.5 Aerogels for Biomedical Applications 559 17.5 Trends, Conclusion, and Outlook 559 17.5.1 Small Volume–High Specialization 559 17.5.2 Large Volume–High Performance 560 17.5.3 Outlook 561 References 562 18 Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas 575
Sílvia C. Nunes, Paulo Almeida, and Verónica de Zea Bermudez 18.1 Introduction 575 18.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials 577 18.2.1 Liquid Crystal Templating 578 18.2.2 Cooperative Self-Assembly 578 18.2.3 Evaporation-Induced Self-Assembly Mechanism 579 18.2.4 Soft Templating 580 18.3 Functionalization of Periodic Mesoporous Silica Materials 582 18.3.1 Postsynthetic Grafting 583 18.3.2 Direct Synthesis 583 18.4 Periodic Mesoporous Organosilicas 584 18.4.1 Synthesis Mechanisms 584 18.4.2 Multifunctionalization 586 18.4.3 Periodic Mesoporous Organosilicas with Amorphous Wall Structure 587 18.4.4 Periodic Mesoporous Organosilicas with Crystal-Like Wall Structure 587 18.4.5 Functionalization of Crystal-Like Periodic Mesoporous Organosilicas and Figures of Merit 591 18.5 Future Trends 595 Acknowledgments 596 References 596 19 Biomimetic Sol–Gel Materials 605
Carole Aimé, Thibaud Coradin, and Francisco M. Fernandes 19.1 Introduction 605 19.2 Natural Sol–Gel Materials 606 19.2.1 Biogenic Oxides 606 19.2.2 Biochemical Conditions of Silica Formation 609 19.2.3 Chemical Features of Biogenic Silica 610 19.2.3.1 Silica Deposit in Higher Plants 610 19.2.3.2 Diatoms Frustule 611 19.2.3.3 Sponges Spicule 612 19.2.4 Properties and Applications 614 19.2.5 Overview 617 19.3 Biomimetic Sol–Gel Chemistry 618 19.3.1 Chemical Background from Biosilicification Processes 618 19.3.1.1 Silaffins 618 19.3.1.2 Silicateins 620 19.3.2 Silicatein-Derived Biomimetic Sequences: From Proteins to Amino Acids 624 19.3.2.1 Enzymes and Peptides 624 19.3.2.2 Rational Design 625 19.3.3 Silaffins-Derived Biomimetic Sequences Based on Polyamines 628 19.3.3.1 Long-Chain Polyamines: Silica Formation and Morphogenesis Control 628 19.3.3.2 Short-Chain Amines 629 19.3.3.3 R5 Peptide 630 19.3.4 Overview 630 19.4 Biohybrid Materials from Bioinspired Mineralization Strategies 631 19.4.1 Mineralization of Biomacromolecules 632 19.4.1.1 Proteins 632 19.4.1.2 Polysaccharides 635 19.4.1.3 Complex Coacervates 636 19.4.2 Mineralization of Microorganisms 637 19.4.3 Materials and Devices Based on Biomimetic and Bioinspired Mineralization 638 19.4.4 Overview 641 19.5 Conclusions 641 References 642 Volume Two: Characterization and Properties of Sol-Gel Materials Part Three Characterization Techniques for Sol–Gel Materials 651 20 Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances 653
Florence Babonneau, Christian Bonhomme 21 Time-Resolved Small-Angle X-Ray Scattering 673
Johan E. ten Elshof, Rogier Besselink, Tomasz M. Stawski, Hessel L. Castricum 22 Characterization of Sol–Gel Materials by Optical Spectroscopy Methods 713
Rui M. Almeida, Jian Xu 23 Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths) 745
Kazuki Nakanishi 24 Sol–Gel Deposition of Ultrathin High-κ Dielectric Films 767
An Hardy, Marlies K. Van Bael Part Four Properties 787 25 Functional (Meso)Porous Nanostructures 789
Andrea Feinle, Nicola Hüsing 26 Sol–Gel Magnetic Materials 813
Lucía Gutiérrez, Sabino Veintemillas-Verdaguer, Carlos J. Serna, María del Puerto Morales 27 Sol–Gel Electroceramic Thin Films 841
María Lourdes Calzada 28 Organic–Inorganic Hybrids for Lighting 883
Vânia Teixeira Freitas, Rute Amorim S. Ferreira, Luis D. Carlos 29 Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications 911
Yolanda Castro, Alicia Durán 30 Optical Properties of Luminescent Materials 929
Sidney J.L. Ribeiro, Molíria V. dos Santos, Robson R. Silva, Édison Pecoraro, Rogéria R. Gonçalves, José Maurício A. Caiut 31 Better Catalysis with Organically Modified Sol–Gel Materials 963
David Avnir, Jochanan Blum, Zackaria Nairoukh 32 Hierarchically Structured Porous Materials 987
Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su 33 Structures and Properties of Ordered Nanostructured Oxides and Composite Materials 1031
María Luz Martínez Ricci, Sara A. Bilmes Volume Three: Application of Sol-Gel Materials Part Five Applications 1055 34 Sol–Gel for Environmentally Green Products 1057
Rosaria Ciriminna, Mario Pagliaro, Giovanni Palmisano 35 Sol–Gel Materials for Batteries and Fuel Cells 1071
Jadra Mosa, Mario Aparicio 36 Sol–Gel Materials for Energy Storage 1119
Leland Smith, Ryan Maloney, Bruce Dunn 37 Sol–Gel Materials for Pigments and Ceramics 1145
Guillermo Monrós 38 Sol–Gel for Gas Sensing Applications 1173
Enrico Della Gaspera, Massimo Guglielmi, Alessandro Martucci 39 Reinforced Sol–Gel Silica Coatings 1207
Antonio Julio López, Joaquín Rams 40 Sol–Gel Optical and Electro-Optical Materials 1239
Marcos Zayat, David Almendro, Virginia Vadillo, David Levy 41 Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies 1281
Renata Reisfeld 42 Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications 1309
Montserrat Colilla, Alejandro Baeza, María Vallet-Regí 43 Sol–Gel Materials for Biomedical Applications 1345
Julian R. Jones 44 Self-Healing Coatings for Corrosion Protection of Metals 1371
George Kordas, Eleni K. Efthimiadou 45 Aerogel Insulation for Building Applications 1385
Bjørn Petter Jelle, Ruben Baetens, Arild Gustavsen 46 Sol–Gel Nanocomposites for Electrochemical Sensor Applications 1413
Pengfei Niu, Martí Gich, César Fernández-Sánchez, Anna Roig Index 1435

Review

"this is a great set of books......within each chapter there are gems of knowledge." (Chromatographia 2016)

Review Text

"this is a great set of books......within each chapter there are gems of knowledge." (Chromatographia 2016)

Review Quote

"this is a great set of books......within each chapter there are gems of knowledge." (Chromatographia 2016)

Details ISBN3527334866 Year 2015 ISBN-10 3527334866 ISBN-13 9783527334865 Format Hardcover Author Marcos Zayat Media Book Publication Date 2015-09-23 Pages 1616 Language English Short Title SOL-GEL HANDBK 3V Edition 1st Country of Publication Germany Edited by Marcos Zayat UK Release Date 2015-09-23 Publisher Wiley-VCH Verlag GmbH Imprint Blackwell Verlag GmbH Subtitle Synthesis, Characterization, and Applications Place of Publication Berlin DEWEY 660.2945 Audience Professional & Vocational

We've got this

At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love!


30 DAY RETURN POLICY

No questions asked, 30 day returns!

FREE DELIVERY

No matter where you are in the UK, delivery is free.

SECURE PAYMENT

Peace of mind by paying through PayPal and eBay Buyer Protection TheNile_Item_ID:136323247;

  • Condition: New
  • ISBN-13: 9783527334865
  • Book Title: The Sol-Gel Handbook, 3 Volume Set
  • ISBN: 9783527334865
  • Publication Year: 2015
  • Type: Textbook
  • Format: Hardcover
  • Subject Area: Chemical Engineering
  • Language: English
  • Publication Name: The Sol-Gel Handbook: Synthesis, Characterization, and Applications 3 Volume Set
  • Item Height: 248mm
  • Author: Marcos Zayat, David Levy
  • Publisher: John Wiley & Sons
  • Item Width: 179mm
  • Item Weight: 3898g
  • Number of Pages: 1616 Pages

PicClick Insights - The Sol-Gel Handbook, 3 Volume Set: Synthesis, Characterization, and Application PicClick Exclusive

  •  Popularity - 0 watchers, 0.0 new watchers per day, 7 days for sale on eBay. 0 sold, 3 available.
  •  Best Price -
  •  Seller - 20,270+ items sold. 1.7% negative feedback. Great seller with very good positive feedback and over 50 ratings.

People Also Loved PicClick Exclusive